
Latent-variable MDP models for adapting the
interaction environment of diverse users

Subramanian Ramamoorthy ∗
M. M. Hassan Mahmud

Benjamin Rosman
School Of Informatics

University of Edinburgh

Pushmeet Kohli
Machine Learning and Perception

Microsoft Research Cambridge

Abstract

Interactive interfaces are a common feature of many systems ranging from field
robotics to video games. In most applications, these interfaces must be used by a
heterogeneous set of users, with substantial variety in effectiveness with the same
interface when configured differently. We address the problem of personalizing
such an interface, adapting parameters to present the user with an environment
that is optimal with respect to their individual traits - enabling that particular user
to achieve their personal optimum. We model the user as a parameterised Markov
Decision Process (MDP), wherein the transition dynamics within a task depends
on the latent personality traits (e.g., skill or dexterity) of the user. A key innovation
is that we adapt at the level of action sets, picking a personalized optimal set of
actions that the user should use. Our solution involves a latent variable formulation
wherein we maintain beliefs over the latent type of users, which serves as a proxy
for the hidden personality traits. This allows us to compute a Bayes optimal action
set which when presented to the user allows them to achieve optimal performance.
Our experiments, with real and simulated human participants, demonstrate that
our personalized adaptive solution outperforms any alternate static solution, and
also other adaptive algorithms such as EXP−3. Furthermore, we show that our
algorithm is most useful under high diversity in user base, where the benefits of
safe initialization and quick adaptation (properties our algorithm provably enjoys)
are most pronounced.

1 Introduction

Interactive interfaces are an important element of many modern systems. Natural user interfaces
such as XBox gesture recognition have revolutionised the way in which we interact with video
games and related applications. The underlying technology has also gone on to become the stan-
dard for mobile robots, especially where cost-effective solutions for human-robot interaction are
necessary. In a different sense, many software applications require interactive interfaces. Search
engine interfaces such as for Google or Bing, or photo-editing software such as Adobe Photoshop,
involve numerous configuration choices that implicitly define the context of the interaction between
the human user and a computational process.

Almost all of these applications must be deployed with large user populations, with substantial
diversity in the performance that results from any given pair of user and configuration setting. For
instance, even with a simple interface like joystick-based navigation within a video game or field
robotics application, there is variety in dexterity and skill. A mismatch between a user’s skill level
and settings such as the sensitivity level at which one interprets a particular motion as a signal can

∗Technical Report version 2: University of Edinburgh, 2013.

1

have substantial negative impact on the user’s ability to perform a task. Sometimes the mismatches
can be in assumptions about perceptual ability, e.g., how precisely aware a user is regarding the
current computational context. As studies such as [1] have shown, perceptual limitations can have
a disproportionately large effect on user’s performance when the task involves interactive decisions
in a dynamic environment. Similar effects occur in software applications, such as in the difference
in performance between young children and skilled adults when presented with a number of choices
by an interface.

The common issue that unifies such diverse applications is personalisation. The need is for auto-
mated ways to define the interaction environment so that it is best adapted to the specific user whom
the system currently faces. Our particular interest is in adapting online, to personalise on the fly as
the user interacts with the system, without long calibration phases and with only partial knowledge
of the underlying traits that induce variability.

The objective of this paper is to present such a model of personalisation and an algorithm for op-
timally adapting the corresponding action set that the user must work with. The effectiveness of
such a model and algorithm can be characterised by a few key properties - safety, i.e., ensuring that
individualised adaptation does not lead to worse performance than a pre-configured statically opti-
mal setting, efficiency, i.e., learning to obtain settings that enable the user to achieve their maximal
performance, and speed, i.e., the ability to adapt within a few episodes which roughly corresponds
to users’ patience. With this in mind, we present a theoretical analysis of our proposed algorithm,
proving that these properties are indeed attained. Also, we present empirical evaluation with real
and simulated human participants, to further validate our claims.

1.1 Related work

The problem of learning to adapt to user behaviour is garnering increasing attention from researchers
in different domains. In one formulation, the learning agent may be assisting a user whose goal is
unknown. For instance, [2] present the hidden-goal MDP to model problems such as that faced by
a doorman who must anticipate when and where to go in order to help someone. In general, this
is a computationally hard problem and fairly strong assumptions are required to achieve tractable
results, such as that the only unknown is the goal state of the user. Indeed, this problem has a longer
history in the literature on plan recognition [3].

Our focus is different in that our problem is not that of trying to predict the user’s future state alone,
based on the past (as in the doorman example above); instead, we try to infer latent ‘personality
traits’ or skill/preferences of the user in order to shape their environment - to enable them to do
better in their chosen task. In this sense, our work is related to recent work on personalisation [4, 5].

In terms of technique, there is some similarity with models involving partially-observable and
mixed-observable Markov Decision Processes [6] [7]. An example of the use of such models in
robotics is the work on intention-aware motion planning [8] [9], to accommodate changes in the en-
vironment caused by purposeful agents, e.g., pedestrians who wander in erratic ways. While solving
a related problem to the above, we adopt a different technical formulation in terms of a Bayesian pro-
cedure that allows us to present novel theoretical results and also to better handle large state-action
spaces.

Our approach also relates to work in recommender systems and web applications, where it is com-
mon to model user behaviour as a Markov Chain, adapting recommendations based on characteris-
tics of these dynamics [10]. Sometimes, this problem is given a sequential decision making flavour
[11], [12] such as by using a bandit learning algorithm to pick optimal recommendation strategies
over time. In our work, we need more expressive models of the user herself, whom we model as a
parameterised-MDP, based on which we devise a novel sequential decision making algorithm.

The notion of designing a customized user interface has been studied in the HCI community, e.g.,
in [13], where one finds ways to automatically synthesize user interfaces tuned to user abilities.
The process involves calibration with a battery of tasks, based on which one obtains information
necessary to pose the interface design problem as one of combinatorial search. While we take
inspiration from such work, the focus of our own work is different. As we are motivated by quick
online adaptation to different users, the harder problem for us is to identify types of users whose
relevant traits may be latent and unobserved.

2

2 A Model of User Interaction

In this section we present the technical setup of our model for shaping an interaction environment.
The next section builds on this by presenting the learning algorithm. In our model, the user is
an agent acting according to a Markov decision process (MDP) [14] and invoking a correspond-
ingly optimal policy 1. A finite MDP M is defined by the tuple (S,A,R, T,R, γ) where S is a
finite set of states, A is a finite set of actions and R ⊂ IR is the set of rewards. T (s′|s, a) is the
state transition distribution for s, s′ ∈ S and a ∈ A and R(s, a), the reward function, is a ran-
dom variable taking values in R. Finally, γ ∈ [0, 1) is the discount rate. A (stationary) policy π
for M is a map π : S → A. The Q function Qπ : S × A → IR of a policy π is defined by
Qπ(s, a) = IE[R(s, a)] + γ

∑
s′ T (s′|s, a)Qπ(s′, π(s′)). The value function for π is defined as

V π(s) = Qπ(s, π(s)). An optimal policy π∗ is defined as π∗ = arg maxπ V
π – the Q function

is given by Q∗(s, a) = IE[R(s, a)] + γ
∑
s′ T (s′|s, a) maxaQ

∗(s′, a). For the optimal policy the
value function is denoted by V ∗. The agent then chooses action arg maxaQ

∗(s, a) at state s. We
assume, without loss of generality, a fixed starting state s◦ for a MDP and define V π , V π(s◦).

The user skill level/type determines the transition function of this MDP – this models the fact that,
for instance, a less skilled user will have a different way of transitioning between states (e.g., being
more variable) than an expert. Unlike in standard applications of optimizing policies for given
MDPs, we will be changing the action set as the interaction proceeds in episodes, which is the main
point of the interaction shaping process. The goal of the learner 2 will be to choose action sets so
as to maximize the future expected discounted reward of the agent. So, the search space for the
main learning algorithm in this paper is a type-space, rather than the space of paths the user actually
traverses, and the value of an type is the value of its optimal policy given the type.

More precisely, we are concerned with a class of MDPs M parametrized by a parameter τ :

M , {((S,A,R, T (·; τ), R, γ)|τ ∈ Sk} (1)

The MDPs differ only in the transition function T (s′|s, a; τ), which now depends on τ (the skill
level of the user). Sk is the set of all types, τ . For instance, the user controlling a joystick corre-
sponds to a MDP. Furthermore, a poorly skilled user will have poor control over the joystick which
means that she will only be able to make coarse moves (regardless of the sensitivity of the joystick).
Whereas, a highly skilled user will be able to execute sharp curves if given an appropriately sensitive
joystick. This implies that the MDP corresponding to the task for each user type has different tran-
sition functions (for example, transitions with high and low entropy for low and high skilled users
respectively).

We further assume that the action space A is large, but is partitioned, where AS is the set of all the
cells of the partition. That is, if α, α′ ∈ AS, then α and α′ are disjoint; and

⋃
α∈AS α = A. We

now only allow policies that take values in a single α ∈ AS (we say the policy is restricted to α).
Continuing with the joystick example, different action sets correspond to changing the sensitivity of
the joystick. With a higher sensitivity joystick, the user now has the option (i.e. actions) to execute
finer grained moves. Of course, whether she will be able to execute them depends on her skill level
(i.e. the transition function ultimately also depends on the user type). The value function of a policy
π now depends on τ and is denoted by V πτ . For a given α, we denote V ατ , maxπ V

π
τ and denote

by π∗α , arg maxπ V
π
τ , where the max is over πs restricted to α.

Our learning problem can now be defined as follows. The agent solves a sequence of MDPs from
the set M in collaboration with the learner – that is the goal of both the agent and the learner is to
maximize the future expected discounted reward of the agent. At the beginning of each phase of the
problem, nature chooses the type τ∗ according to a distributionK1(τ) and in response, the learner is
required to choose the action set α. The agent can now only use policies restricted to α. The learner
cannot observe the true τ∗ but knows the value of T and R for each τ . The agent knows its own
type and also knows the value of T and R. Once α is given, the agent learns and acts according to
the policy π∗α.

1We make the rationality assumption that the user is an MDP. We recognize that in some applications this
is not the case. Handling this requires an extension to our model: the MDP is replaced with an alternate
behaviourally motivated model of choice, without fundamentally altering anything else in our framework.

2We refer to learning algorithms, which choose the action sets as the learner. The human user is often
referred to as the agent.

3

The role of the learner is as follows. At any point in time, the learner can step in and change the
action set from α to a new action set α′. In response the agent starts acting according to π∗α′ instead.
The goal of the learner is to choose the action set arg maxα V

α
τ . In terms of the joystick example,

this means that at the beginning some user of unknown skill (τ∗) comes in to use the interface. She
operates the interface to the best of her ability given the sensitivity. Given her actions, the learner
tries to estimate the skill level and based on that either increases or decreases the sensitivity.

Given the above setup, the optimal action set and a-priori optimal action sets are defined, respec-
tively, to be:

α∗ , arg max
α

V ατ∗ , α∗ , arg max
α

IEK1(τ)[V
α
τ] (2)

In the next section, our goal will be to derive an a-posteriori optimal action-set selection policy, that
is, a policy that adaptively and optimally chooses the action-set that is optimal according to some
well-defined and reasonable criteria and also eventually converges to α∗.

3 Determining Agent Type

In the following we present our approach to adaptively determine the agent type through repeated
interactions. We first describe our criteria, Bayes optimality, for choosing action sets and then
describe the algorithm that uses the Bayes optimal action set. We then present convergence results
that show that our algorithm finds the true type τ∗ and plays the optimal action set α∗ in the limit. We
additionally provide convergence rates for our algorithm that depend on the environment parameters.

3.1 Bayes Optimal Action Set

We will assume the knowledge of the set of user types Sk = {τ1, τ2, · · · , τn}. In the experiments,
we acquire these types during an initial training phase by interacting with users. This is discussed
further in Section 4. Assume that at time step t of a particular interaction session we have observed
a state-action sequence sa0:t , s0a0s1a1 · · · st (with sa0:0 , s0). Given this session, the likelihood
of a type τi can be computed as L(τi|s0:t) =

∏t−1
i=0 T (si+1|si, ai; τi), while its posterior probability

is defined as Pr(τi|sa0:t) = L(τi|sa0:t)W (τi) where W (.) is a prior distribution over Sk.

Having defined the posterior distribution over types, our approach will be, at step t, to choose the
Bayes optimal action-set αBO i.e. the action set maximizing expectation of V ατ with respect to the
posterior over Sk. More formally,

αBO(sa0:t) , arg max
α

∑
i

Pr(τi|sa0:t)V
α
τi (3)

For the empty sequence ∅, we define αBO(∅) , arg maxα
∑
iW (τi)V

α
τi .

3.2 Learning Algorithm

Our learning algorithm, Bayesian Environment Adaptation with Types (BEAT) is listed as Algorithm
1. At each step, BEAT observes the agent action and updates the likelihood (and hence posterior)
of each type. Additionally, every k steps, it chooses a new action set. With probability 1 − εt/k it
chooses the Bayes optimal action set and with probability εt/k it chooses an action set at random.
The exploration terms satisfy the condition of

∑
n εn = ∞ and limn→∞ εn = 0 (for instance

εn = 1/n). To see that it is necessary to explore, consider the following example. There are two
types τ1, τ2 with τ1 the true type, and two action-sets α1, α2, with α1 being the optimal for τ1.
Under α2 both τ1 and τ2 have identical transitions and hence V α2

τ2 = V α2
τ1 . In α1, τ1 and τ2 have

different transition distributions, and V α1
τ2 � V α1

τ1 . So under the uniform prior, the Bayes optimal
action-set will be α2, and under α2, both τ1, τ2 will have identical likelihoods and hence identical
posteriors. Therefore, because of the condition V α1

τ2 � V α1
τ1 , αBO(s0:t) would always be α2.

3.3 Convergence of the Algorithm

In this section we show that in the limit, BEAT plays only the optimal action set α∗ and provide
corresponding convergence rates. From the definition of the BEAT algorithm, the probability of

4

Algorithm 1 Bayesian-Environment-Adaptation-with-Types(M, term, k, {τi}(i),W, {T (s′|s, a; τi}(i))
1: Input:The set of MDPs M , Task termination condition term, action-set selection period k, a

set of types τi, W a prior over types.
2: Initialize: ∀τi, likelihood L0(τi) = 1. εn is a sequence with

∑
n εn =∞ and limn→∞ εn = 0.

3: Compute V ατi for each α ∈ AS and type τi.
4: Let s0 be the initial state and t← 0.
5: while term = false do
6: Observe agent action at, reward rt and next state st+1.
7: Update likelihood of each type: Lt+1(τi) = Lt(τi)× T (st+1|st, at; τi).
8: if t mod k = 0 then with probability εt/k set αt+1 = an action-set at random, and with

probability 1− εt/k set αt+1 = αBO(sa0:t+1) (defined in (3)). Else αt+1 ← αt.
9: t→ t+ 1.

10: end while

observing a state action sequence sa0:t is given as

Pr(sa0:t; ε, τ
∗) ,

∑
α0:t−1

t−1∏
i=0

T (si+1|si, ai; τ∗)Pr(αi|sa0:i)I[ai=π∗αi (si)]
(4)

The outer sum is over all possible action-set sequences of length t − 1 and Pr(αi|sa0:i) is the
probability that αi is chosen in line 8 in BEAT. Given this, the first theorem below shows that BEAT
finds the true type Pr(·|ε, τ∗) with very high probability (proof in supplementary material).
Theorem 1. Let τ be any type such that there exists at least one action-set ᾱ for which
T (·|s, π∗ᾱ(s); τ) 6= T (·|s, π∗ᾱ(s); τ∗) for at least one state for any length k path of the optimal
policy π∗ᾱ with probability at least β > 0. Then,

lim
t→∞

L(τ∗|sa0:t)W (τ∗)

L(τ |sa0:t)W (τ)
=∞ Pr(·; ε, τ∗) almost surely (5)

The theorem says that the posterior of the true type τ∗ becomes arbitrarily larger than the posterior
of any other type, provided that there exists at least one action-set ᾱ for which the the types are
different and this difference is observed with at least some positive probability β. If this is not
true, then clearly τ∗ and τ are equivalent and there is no point comparing τ∗ and τ (see Appendix
A in supplementary material). The proof is different from standard proofs of Bayesian posterior
consistency because BEAT is actively choosing action sets and the true type τ∗ and non-true type
τ may be identical in many action sets. As such it is quite non-trivial. The corollary to the above
theorem establishes the rate at which the posterior convergence takes place (proof in supplementary
material).
Corollary 1. Assume that the hypothesis of Theorem 1 is true for type τ . Let PEτ (t,m) be
a (εn dependent) lower bound on the probability that after t steps the action set ᾱ was ob-
served m times. Then with probability at least PEτ (t,m), L(τ∗|sa0:t)W (τ∗)

L(τ |sa0:t)W (τ) > PEτ (t,m)mηβ,
where η is a lower bound on the KL divergence D[T (·|s, π∗ᾱ(s); τ∗)||T (·|s, π∗ᾱ(s); τ)] whenever
T (·|s, π∗ᾱ(s); τ) 6= T (·|s, π∗ᾱ(s); τ∗).

So the corollary shows that the rate of convergence depends directly on our exploration frequency
(via εn dependent PEτ (t,m)), and how easy it is to distinguish between correct and incorrect types
(as determined by η and β). Our next theorem almost completes the convergence analysis by show-
ing that in the limit only the optimal action set is chosen (proof in supplementary material).
Theorem 2. If each τ 6= τ∗ satisfies the hypothesis of Theorem 1, and if αt is the action set chosen
in BEAT at step t, then limt→∞ αt = α∗ in Pr(·; ε, τ∗).

So the theorem shows that the BEAT algorithm chooses the optimal action set in the limit. Our final
theorem also gives a convergence rate and completes the analysis (proof in supplementary material).

Theorem 3. Define l̂ , |Sk| − 1. For a fixed δ, let tδ,m , min{t|∀τ, PEτ (t,m) > 1 − δ/l̂}. Let
η∗ be the minimum over all τ ∈ Sk of the η parameter defined in Corollary 1. Let M = Rmax l̂

(1−γ)V α
∗

τ∗

5

(η∗β(1− δ/l̂))−1. Then if each τ 6= τ∗ satisfies the hypothesis of Theorem 1, then with probability
at least (1− δ), αBO(sa0:tδ,M) = α∗.

Recall that Rmax is the upper bound on per step reward. Then, this theorem shows that for M suf-
ficiently large (a function of Rmax and the number of types |Sk|), with high probability the optimal
action is chosen by the algorithm.

4 Experiments

In this section we present two sets of experiments in a video game domain to illustrate our method.
In the first set, the user is a robot/artificial agent, while in the second set the users are humans. In
the following, we describe the comparison algorithms and then discuss the results in detail. In our
experiments, we compare BEAT with α∗ (optimal action set (2) , α∗ (a-priori/population optimal
action set (2)), and the EXP-3 algorithm [15, 16] for non-stochastic multi-armed bandits (NSMB).
This latter framework is a natural fit for addressing the problem of action-set selection. In the
NSMB problem, there are c arms where each arm i has a payoff process xi(t) associated with it.
The learner runs for T steps and at each step t needs to pull/select one of the arms f(t) and his payoff
is xf(t)(t). Additionally, the learner only gets to view the payoff of the arm f(t) it has chosen. The
goal of the learner is to minimize its regret with respect to the best arm, that is minimize the quantity
maxi

∑T
t=1 xi(t)−

∑T
t=1 xf(t)(t). In general it is not possible to minimize this in any meaningful

sense. An optimal algorithm in the general case, for minimizing the expected regret was developed
in [15], called the EXP-3 algorithm. In our experiment, each arm corresponds to an action-set run
for k steps and the payoff is the total discounted reward obtained in those k steps.

4.1 Experiment Setup

Design. The video game domain is shown in Figure 1. The goal of the user is to move a ball
(red circle) from a fixed start location to the goal location (green rectangle). The ball moves with a
constant speed z and at each step the user can choose to change the direction of motion into one of
N, S, E, and W. Her loss (negative reward), received when she reaches the goal, is the normalized
time taken + normalized number of collisions. During play, the learner chooses the speed to help
minimize the loss. We capture two types of limitations in user behaviour. The size of the ball reflects
limits to perceptual ability, with large ball sizes indicating reduced acuity. The noise of the motion
of the ball reflects limits to motor ability, such as intrinsic jitter in the way they use the device.
Combinations of larger ball+noise imply less skill.

Parameters. The state space is the location of the ball at each time step (the game field
was 1000 × 1000). Each action is a move by z-units in a cardinal direction (N,S,E,W),
where z ∈ {30, 40, 50, 60, 70}. Each action set αz corresponds to all the motions at speed z.

Figure 1: Our video game domain;
green rectangle is the goal location, and
the red circle is the ball.

The direction at step t is the most recent direction chosen
by the user at t′ ≤ t (so, the actual play of the user is mod-
elled in the MDP as the user choosing the same action at
every step as her last choice of direction). There was a
constant amount of noise (on top of noise due to type)
with each action, so the ball moves in the given direction
followed by (discretized) Gaussian motion (perpendicular
to the direction of motion) with mean 0, and σ ∈ [0.3, 8]
(chosen randomly for each episode). There were 5 differ-
ent types: ball size b ∈ {2, 5, 10, 20, 40, 60}, noise levels
nb = b/2%. So for type b, with probability 1 − nb, the
ball moves in the current direction, and with probability
nb, it moves in another random direction. Hence, the type
modifies the base transition probabilities (1) by the noise
nb and (2) because the ball sizes determine the locations
that result in collisions. We ran two sets of experiments, one with a simulated user and another
with human users. In both cases, we ran an initial training phase to collect transition distribution
information for each (b, nb) × z pair. We used k = 1, and ε0 = 0.5, ε decreased by 0.1 every
episode.

6

Algorithms. The simulated user policy was the A∗ algorithm, where the direction chosen at each
step, given speed z, was toward the location, at distance z from the current location, that had the
lowest cost. After training, we ran a test phase, during which we chose the type at random and
recorded the loss over 5 episodes of BEAT, each action-set and EXP-3 averaged over 100 runs. Note
that, the user knows her type but these methods do not. For the simulated user, the policy used was
the same, and for the human experiment, we used three different users, each performing a sequence
of many trials involving combinations of ball sizes and speeds.

4.2 Results

Simulated User. We present three types of plots. The first plot, Figure 2 shows the loss of each z for
three representative (b, nb) and illustrates a ‘phase-transition’ phenomenon on the loss of the speeds
for the different sizes: higher speeds tend to work better for smaller sizes and conversely. Figure
3 shows the losses in terms of the population diversity. Here, in the x-axis each x corresponds to
all possible combinations of x types (so all

(
6
x

)
combinations). This captures different levels of

heterogeneity in user populations. In the figure, for the curve α∗, the point α∗(x) gives the loss of
best speed averaged across all populations of size x. Hence EXP− 3(x) gives the loss of EXP-3
averaged over all population of size x, while BEAT (x) gives the loss of BEAT averaged over all
population of size x. This curve shows, that averaged across population sizes, BEAT outperforms
EXP-3 significantly. Furthermore, while for the smaller population size, the α∗ beats BEAT , for
the larger population sizes BEAT beats α∗ comprehensively, illustrating the need for adaptation.
Additionally, note that the curve for α∗, the optimal per type, averaged over all types, is the line
f(x) = α∗(1) because α∗(1) gives the ‘population optimal’ of size 1, which is just α∗. Finally,
Figure 4 shows how well BEAT is able to identify types. It shows that BEAT has trouble identifying
the smallest type. We conjecture that this is because the behavior of b = 5 and b = 2 are nearly
indistinguishable. However, other than that, it is able to identify the correct type fairly rapidly,
almost always halfway through the first episode.

Human User. The results for the human experiments are presented as before in three plots. Fig-
ure 5 shows the phase-transition in the loss at different speeds. Figure 6 shows the performance
of BEAT and α∗ for the human experiments in terms of population diversity. We do not report the
performance of EXP-3 because data collection for that algorithm takes time that exceeded the con-
straints of our human subjects. In these experiments, we see that BEAT significantly outperforms
α∗ for all population sizes, hence demonstrating the benefit of adaptation with real human subjects,
corroborating our more extensive simulation results above. This is a key experimental result of this
paper. Finally, Figure 7 shows the efficacy of our algorithm at identifying different types. As in
simulated user experiments, our algorithm has some trouble distinguishing between the very nearby
types b = 5 and b = 2 but the error is not beyond the threshold of small noise.

5 Conclusions

We present a new model and an algorithm for adapting interaction environments. We are motivated
by applications wherein interfaces must be quickly tuned to users who may be drawn from a hetero-
geneous population. Our latent variable model captures behavioural types, where each type defines
an instance of a complete decision process. Our algorithm is Bayesian in nature, and enjoys the de-
sirable property that our initial action set choice is already a safe one, corresponding to a notion of
population-optimal setting. As our theoretical analysis and experiments show, BEAT learns quickly,
suggesting promise that it address the ways in which untrained users might actually interact with
interfaces. A key conclusion of our experiments is that this kind of adaptation is indeed necessary in
environments with substantial diversity – the regret of alternate approaches shoots up at high diver-
sity. Our experiments also raise questions for future work. Currently, we work under the assumption
that when an action set has changed, the user accordingly changes her behaviour. In our algorithm,
selecting small values of k ensures that this is properly handled. Devising more sophisticated ways
to accommodate user learning is an avenue for further exploration. Similarly, we work in a setting
where a training corpus corresponding to various types seeds our learning algorithm. Incrementally
acquiring data corresponding to heterogeneous types and performing (fully unsupervised) learning
in a life-long fashion is another important direction to be explored.

7

SIMULATED USERS

Figure 2: The performance of each speed for
each type, illustrating baseline domain perfor-
mance. The user is simulated.

Figure 3: The performance of best static speed
α∗, EXP-3 and BEAT for each of 6 possible
combinations of type populations when the user
is simulated. Please see Section 4.2 for details.

Figure 4: The ratio of the maximum-likelihood
type and posterior and the true type in BEAT,
averaged over all population-diversity trials in
our experiments. The user is simulated.

HUMAN USERS

Figure 5: The performance of each speed for
each type. This establishes baseline domain per-
formance when the user is human.

Figure 6: The performance of best static speed
α∗ and BEAT for each of 6 possible combina-
tions of population types when the agent is hu-
man. Please see Section 4.2 for details.

Figure 7: The ratio of the maximum-likelihood
type and posterior and the true type in BEAT,
averaged over all population-diversity trials in
our experiments when the user is human.

8

A Proofs

For the proofs, we introduce the following distribution over state-action-set-action sequence
sαa0:t , s0α0a0 · · · st−1αt−1at−1st:

Pr2(sαa0:t; ε, τ
∗) ,

t−1∏
i=0

T (si+1|si, ai; τ∗)Pr(αi|sa0:i)I[ai=π∗αi (si)]
(6)

So clearly, marginalizing Pr2 over action-set sequences gives us Pr(sa0:t|ε, τ∗) defined in (4).

We now prove Theorem 1. The main ideas can be broken down as follows (each appearing as
a Claim in the proof). (1) An application of the Borel-Cantelli lemma gives us that BEAT chooses
action set ᾱ infinitely often almost surely. (2) The ln of the posterior ratio (5) diverges in expectation.
This is a non-trivial step that requires a careful decomposition of the expectation into a sum of KL-
divergences and then an application of the Gibbs inequality. (3) Finally, using monotonicity of ln
and the fact that convergence in mean sum implies almost sure convergence, we show that the ratio
(5) diverges almost surely.

Figure 8: This figure illustrates the notion that the action set sequence ᾱᾱ appears 3 times for all
strings. The sets GK(m) are defined in (7).

Proof of Theorem 1. The proof consists of three claims. The first claim is illustrated in figure 8.

Claim 1. BEAT selects action set ᾱ infinitely often almost surely. In other words, for any n, there
is a smallest tn such that in every sequence of action sets α0:tn of positive probability under Pr2, ᾱ
appears in n, non-overlapping subsequences, each of length k.

Proof. Recall that, for a sequence of events An, A∗ , lim supAn = ∩∞l=0 ∪∞n=l An. This means
that if x ∈ A∗, then there are infinitely many An such that x ∈ An. Defining An = {αnk = ᾱ at
step nk of BEAT due to exploration via εn parameter in line 8 }, A∗ corresponds to the event that ᾱ
is chosen infinitely often:

A∗ = {α0:∞|∀n, ∃n′ > n,αn′ = ᾱ}
Now An are all independent, and by the condition on εn,

∑
n Pr(An) =

∑
n εn|AS|−1 = ∞.

Hence, by the Borel-Cantelli lemma (see for instance Theorem 2.7 [17]), Pr(A∗) = 1, and this
implies that ᾱ is chosen infinitely often almost surely. This gives the first part of the claim. The
second part now follows from the fact that in BEAT the action-sets are changed only every k steps.

Claim 2. limt→∞ ln L(τ∗|sa0:t)W (τ∗)
L(τ |sa0:tW (τ) =∞ in Pr(·|ε, τ∗) expectation.

9

Proof. We can write

ln
L(τ∗|sa0:t)W (τ∗)

L(τ |sa0:t)W (τ)
= ln

∏t−1
i=0 T (si+1|si, ai; τ∗)W (τ∗)∏t−1
i=0 T (si+1|si, ai; τ)W (τ)

= K +

t−1∑
i=0

ln
T (si+1|si, ai; τ∗)
T (si+1|si, ai; τ)

The first equality expands using the definition of L(·) and the second equality uses the defining
property of ln, where we set K , ln[W (τ∗)/W (τ)], and K is finite. Taking expectation of the final
term above, sans K, with respect to Pr(sa0:t; ε, τ

∗) we can rewrite as follows:

⇒
∑
sa0:t

Pr(sa0:t; ε, τ
∗)

t−1∑
i=0

ln
T (si+1|si, ai; τ∗)
T (si+1|si, ai; τ)

(1)
=

t−1∑
i=0

∑
sa0:t

Pr(sa0:t; ε, τ
∗) ln

T (si+1|si, ai; τ∗)
T (si+1|si, ai; τ)

(2)
=

t−1∑
i=0

∑
sa0:i+1

Pr(sa0:i+1; ε, τ∗) ln
T (si+1|si, ai; τ∗)
T (si+1|si, ai; τ)

(3)
=

t−1∑
i=0

∑
sa0:i

Pr(sa0:i; ε, τ
∗)
∑
αi

Pr(αi|sa0:i)
∑
ai

I[ai=π∗αi (si)]∑
si+1

T (si+1|si, ai; τ∗) ln
T (si+1|si, ai; τ∗)
T (si+1|si, ai; τ)

(4)
=

t−1∑
i=0

∑
sa0:i

Pr(sa0:i; ε, τ
∗)
∑
αi

Pr(αi|sa0:i)
∑
ai

I[ai=π∗αi (si)]

D[T (·|si, ai; τ∗)||T (·|si, ai; τ)]

(5)
=

t−1∑
i=0

∑
sαa0:i

Pr2(sαa0:i; ε, τ
∗)
∑
αi

Pr(αi|sa0:i)
∑
ai

I[ai=π∗αi (si)]

D[T (·|si, ai; τ∗)||T (·|si, ai; τ)]

In the above, in (1) we moved the probability/multiplier inside and then swapped the sums. In (2)

we used the fact that the ln term is independent of ai+1sai+2:t (alternatively, the fact that for any
sequence of events {Bi}(i),

∑
i Pr(Bi, C)f(C) =

∑
i Pr(Bi|C)Pr(C)f(C) = Pr(C)f(C)). In

(3) we used the definition (4) of Pr(sa0:i; ε, τ
∗). In (4), D[·||·] is the KL divergence between the

two distributions. Finally in (5) we introduced the action-sets explicitly by using (6). Below we will
work with this final form (5) of the expectation, w.r.t. Pr(sa0:t; ε, τ

∗), of the log-likelihood ratio. In
the following, our goal will be to write this as a sum over state-action-set-action strings that end in
subsequences containing ᾱ, has probability at least β and has D(·||·) = η > 0.

By Claim 1, for any any n, there is a smallest tn such that for every sequence of action sets α0:tn
of positive probability under Pr2, ᾱ appears in n, non-overlapping subsequences each of length k.
We use this fact to define the set GK(m) with m ≤ n, which contains all state-action-set-action
sequences where non-overlapping k-length ᾱ sequences have appeared exactlym times, and nothing
else has appeared after that (See figure 8 for an illustration).

GK(m) , {sαa0:t|t ≤ tn, P r2(sαa0:t; ε, τ
∗) > 0, there are m non-overlapping subsequences

αj:j+k−1 with αi = ᾱ for j ≤ i ≤ j + k − 1, with αt−k:t−1 being one such sequence} (7)

First note that GK(m) is a collection of strings that may be of possibly different lengths. Further-
more, because each element of GK(m) has maximal number of occurrences of m sequences, this
set is prefix free (i.e. no string is a prefix of another). The maxmimality also implies that GK(m)
is disjoint from GK(m′) whenever m′ 6= m. By Claim 1,

∑
sαa0:t∈GK(m) Pr2(sαa0:t; ε, τ

∗)) = 1

for each m (because for some t ≤ tn every string of positive probability has exactly m occurrences
of k-length ᾱ sequences – see figure 8).

10

The hypothesis of this theorem postulates that there must be a subset of B of GK(m) such that∑
sαa0:j∈B Pr2(sαa0:j ; ε, τ

∗)) ≥ β and for each sαa0:j ∈ B, there must be at least one action ai
and state si, j − k − 2 ≤ i ≤ j − 1, such that T (·|si, ai; τ∗) 6= T (·|si, ai; τ). Then, by the Gibb’s
inequality for KL divergence,D[T (·|si, ai; τ∗)||T (·|si, ai; τ] > η > 0 (η > 0 because all the spaces
are finite, and infinitely decreasing bounds are not possible). We will call such a state-action pair a
witness pair (i.e. they are a witness that τ∗ 6= τ).

Using these definitions, (5) from above, with t = tn, is

(6)

≥
n∑

m=1

∑
sαa0:j∈GK(m)

j−1∑
i=j−k

Pr2(sαa0:i; ε, τ
∗)
∑
αi

Pr2(αi|sαa0:i)

∑
ai

I[ai=π∗αi (si)]
D[T (·|si, ai; τ∗)||T (·|si, ai; τ)]

(7)

≥
n∑

m=1

∑
sαa0:j∈GK(m)

j−1∑
i=j−k

Pr2(sαa0:i; ε, τ
∗)Pr2(ᾱ|sαa0:i)

∑
ai

I[ai=π∗ᾱ(si)]D[T (·|si, ai; τ∗)||T (·|si, ai; τ)]

(8)
>

n∑
m=1

∑
sαa0:j∈GK(m)

j−1∑
i=j−k

Pr2(sαa0:i; ε, τ
∗)Pr2(ᾱ|sαa0:i)

∑
ai

I[ai=π∗ᾱ(si)]ηI[si,ai is a witness pair]

(9)
=

n∑
m=1

βη
10
= nβη

In the above, in (6) the outer sums in (5) are replaced by 3 sums. To show that this is valid, we need
to show that (a) all the strings are of length ≤ t = tn and (b) no string appears more than once in
the sums in (6). For (a), by definition GK(m) only contain strings of length ≤ t = tn. For (2), all
the GK(m) are disjoint. Furthermore, if sαa0:j ∈ GK(m), then only sαa0:j−l for l ≥ k appears
in GK(m− 1) and so the inner sum for GK(m− 1) reaches only up to sαa0:j−l−1. Putting all this
together, we have that no string appears more than once.
(7) follows because we exclude all action sets 6= ᾱ. (8) follows because we only keep the
witness actions and for these the KL divergence is lower bounded by η. (9) follows because∑
sa0:t∈GK(m) Pr2(sa0:t) = 1 for each m and the cumulative probability of the witness strings

for each m is ≥ β, and (10) is obvious.

Finally, since by Claim 1 n → ∞ as t → ∞, and since K = ln[W (τ∗)/W (τ)] is finite, we have
that ln posterior ratio in the statement of the claim also diverges in expectation.

Claim 3. Let gt ,
L(τ∗|sa0:t)W (τ∗)
L(τ |sa0:tW (τ) . Then the limt→∞ I[gt>M] =∞ for each M almost surely.

Proof. In Claim 3 we established that IE(gt) goes to ∞ in expectation. In particular, for each
M , there exists a t, such that IE(gt) > M – indeed, from the proof of Claim 1, t = tnM , where
nM = (M + 1)(βη)−1. For this t, IE[I[gt>M]] = 1. Since I[gt>M] ≤ 1 for all t, this implies that∑∞
t=1 IE[|1−I[gt>M]|] =

∑∞
t=1 IE[1−I[gt>M]] =

∑∞
t=1 1−IE[I[gt>M]] ≤ tnM . Furthermore since

1− I[gt>M] ≤ 1, (1− I[gt>M])
2 ≤ (1− I[gt>M]). Putting all these facts together, we have

∞∑
t=1

IE[(1− I[gt>M])
2] <∞ (8)

Now recall that a random variable Xn is said to converge in mean sum to a random variable X if∑∞
t=1 IE[(X−Xn)2] <∞. Additionally, ofXn converges toX in mean sum, then it also converges

11

almost surely. This, togeteher with (8) implies that I[gt>M] converges to 1 almost surely. Since M
was arbitrary, this completes the proof.

By Claim 3, the posterior ratio is greater than everyM almost surely, which means that the posterior
ratio diverges almost surely, completing the proof.

Proof of Corollary 1. This result follows directly from the derivation of (9) in the proof of Theorem
1. In particular, under the hypothesis of this corollary all the statements leading upto (9) remain
true, except that the probability mass of the set of strings in the sum in (5) is PEτ (t,m), from which
the statement of the Corollary follows.

Proof of Theorem 2. By Theorem 1 the the relative posterior of all τ 6= τ∗ vanishes. Hence for each
α,
∑
i Pr(τi|sa0:t)V

α
τi = V ατ∗ almost surely. From whence, by defintion (3) of αBO and (2) of α∗,

αBO(sa0:t) = α∗ almost surely. Finally, as limt→∞ εt = 0, in lines 8-12 of the BEAT algorithm
only the optimal action set is chosen in probability.

Proof of Theorem 3. By Corollary 1 For t = tδ,M , for each τ with probability at least 1 − δ/l̂,
L(τ∗|sa0:t)W (τ∗)
L(τ |sa0:t)W (τ) > Rmax l̂

(1−γ)V α
∗

τ∗
, rewriting which gives us

L(τ∗|sa0:t)W (τ∗)V α
∗

τ∗
1

(|Sk| − 1)
> L(τ |sa0:t)W (τ)

Rmax

(1− γ)
(9)

Now Rmax/(1 − γ) is a bound on V ατ for any V ατ , and summing (9) over τ gives us that with
probability at least 1− δ,

L(τ∗|sa0:t)W (τ∗)V α
∗

τ∗ >
∑
τ 6=τ∗

L(τ |sa0:t)W (τ)V ατ

for any α, τ . The above implies that αBO(sa0:tδ,M) = α∗, proving the theorem.

A.1 Discussion of the Hypothesis in Theorem 1

In Theorem 1, we make the hypothesis that the type τ satisfies that there exists at least one action-
set ᾱ for which T (·|s, π∗ᾱ(s); τ) 6= T (·|s, π∗ᾱ(s); τ∗) for at least one state for any length k path
of the optimal policy π∗ᾱ with probability at least β > 0. Intuitively it can be seen that if this
very weak condition is not satisfied, then the two types are equivalent. We now give a very brief
sketch of the formal argument as to why this implies that the two types are equivalent. We make
the standard assumption that any policy in the MDP is ergodic [14]. This, coupled with Claim 1 in
Theorem 1, implies that on any path generated by a sequential application of optimal policies π∗αt in
BEAT, we will observe every sequence of k length paths possible under every action set α infinitely
often almost surely. Hence, if the lower bound on the probability β is 0, then it must mean that
T (·|s, π(s); τ) = T (·|s, π(s); τ∗).

12

References

[1] A. Valtazanos and S. Ramamoorthy. Evaluating the effects of limited perception on interac-
tive decisions in mixed robotic environments. In HRI ’13: Proc. ACM/IEEE International
Conference on Human-Robot Interaction, 2013.

[2] Alan Fern and Prasad Tadepalli. A computational decision theory for interactive assistants,
advances in neural information processing systems. In Proceedings of the 23rd Conference on
Neural Information Processing Systems, 2010.

[3] Eugene Charniak and Robert Goldman. A probabilistic model of plan recognition. In Proceed-
ings of the ninth National conference on Artificial intelligence - Volume 1, AAAI’91, pages
160–165. AAAI Press, 1991.

[4] Sven Seuken, David C. Parkes, Eric Horvitz, Kamal Jain, Mary Czerwinski, and Desney S.
Tan. Market user interface design. In ACM Conference on Electronic Commerce, pages 898–
915, 2012.

[5] Haoqi Zhang, Yiling Chen, and David C. Parkes. A general approach to environment design
with one agent. In IJCAI, pages 2002–2014, 2009.

[6] Diane Litman Satinder Singh, Michael Kearns, and Marilyn Walker. Optimizing dialogue
management with reinforcement learning: Experiments with the NJFun system. Journal of
Artificial Intelligence Research, 16:105–133, 2002.

[7] Sylvie C. W. Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Planning under uncertainty
for robotic tasks with mixed observability. I. J. Robotic Res., 29(8):1053–1068, 2010.

[8] T. Bandyopadhyay, K. S. Won, D. Hsu E. Frazzoli, W. S. Lee, and D. Rus. Intention-aware
motion planning. In Proceedings Workshop of Algorithmic Foundations, WAFR-2012, 2012.

[9] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon. A human aware mobile robot motion
planner. IEEE Transactions on Robotics, 23(5):874–883, 2007.

[10] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. Recommender
Systems An Introduction. Cambridge University Press, 2011.

[11] David Maxwell Chickering and Tim Paek. Personalizing influence diagrams: applying online
learning strategies to dialogue management. User Modeling and User-Adapted Interaction,
17(1-2):71–91, 2007.

[12] Guy Shani, David Heckerman, and Ronen I. Brafman. An mdp-based recommender system.
Jouornal of Machine Learning Research, 6:1265–1295, 2005.

[13] K.Z. Gajos, J.O. Wobbrock, and D.S. Weld. Improving the performance of motor-impaired
users with automatically-generated, ability-based interfaces. In CHI ’08: Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors in computing systems, pages 1257–
1266, 2008.

[14] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons, 1994.

[15] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing, 32:48–77, 2002.

[16] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction Learning and Games. Cambridge Univer-
sity Press, 2006.

[17] Achim Klenke. Probability Theory: A Comprehensive Course. Springer-Verlag, 2008.

13

